Add like
Add dislike
Add to saved papers

Reverse epithelial-mesenchymal transition contributes to the regain of drug sensitivity in tyrosine kinase inhibitor-resistant non-small cell lung cancer cells.

Tyrosine kinase inhibitors (TKIs) are currently the first-line treatment for non-small cell lung cancer (NSCLC) patients with epidermal growth factor receptor (EGFR) mutations. These patients receive platinum-based chemotherapy as the second-line treatment after they develop resistance to TKIs. Many patients regain sensitivity to the TKIs used in the first-line treatment after the failure of chemotherapy. However, the molecular mechanism for the regain of TKI sensitivity is largely unknown. In this study, we established gefitinib-resistant PC9 and HCC827 cell lines, which did not harbor the EGFR T790M mutation and MET amplification but exhibited the epithelial-mesenchymal transition (EMT) phenotype. Overexpression of EMT inducers, Snail or Slug, in the parental lines promoted their resistance to gefitinib. The gefitinib-resistant cell lines regained their sensitivity to gefitinib and displayed reverse EMT phenotypes after long-term culture in gefitinib-free culture medium. Blockage of reverse EMT by stable expression of Snail or Slug prevented the regain of TKI sensitivity. In conclusion, reverse EMT is one of the major mechanisms for the regain of TKI sensitivity in TKI-resistant NSCLC cells, suggesting that the development of small molecules targeting the EMT process may prolong the efficacy of TKIs in NSCLC patients with EGFR mutations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app