Add like
Add dislike
Add to saved papers

Direct observations of dynamic PtCo interactions in fuel cell catalyst precursors at the atomic level using E(S)TEM.

Reduction reactions in practical bimetallic platinum-cobalt electrode catalyst precursors containing platinum, cobalt and cobalt oxides in hydrogen at 200, 450 and 700 °C for 6 h have been studied in situ using an aberration corrected environmental (scanning) transmission electron microscope (AC E(S)TEM). Little difference was observed in reduction at 200 °C but during and after reduction at 450 °C, small nanoparticles less than 3 nm in diameter with tetragonal PtCo structures were observed and limited Pt3 Co ordering could be seen on the surfaces of larger nanoparticles. During and after reduction at 700 °C, fully ordered Pt3 Co and PtCo nanoparticles larger than 4 nm were produced and the average nanoparticle size almost trebled relative to the fresh precursor. After reduction at 450 and 700 °C, most nanoparticles were disordered platinum/cobalt alloys with fcc structure. After reduction at 700 °C many of the smallest nanoparticles disappeared suggesting Ostwald ripening had occurred. Mechanisms concerning the thermal transformation of mixed cobalt and platinum species are discussed, offering new insights into the creation of bimetallic platinum-cobalt nanoparticles in fuel cell catalysts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app