Add like
Add dislike
Add to saved papers

Interaction of organic compounds with chondritic silicate surfaces. Atomistic insights from quantum chemical periodic simulations.

The interaction of 14 different probe organic molecules with the crystalline (010) forsterite Mg2 SiO4 surface has been studied at quantum chemical level by means of B3LYP-D2* periodic simulations. The probe molecules are representatives of the class of soluble organic compounds found in carbonaceous meteorites, namely: aliphatic and aromatic hydrocarbons, alcohols, carbonyl compounds, amines, amides, nitrogen heterocycles, carboxylic and hydroxycarboxylic acids, sulfonic and phosphonic acids, amino acids, and carbohydrates. With the exception of the aliphatic and aromatic hydrocarbons, the interaction takes place mainly between the O and N electron donor atoms of the molecules and the outermost Mg surface cations, and/or by hydrogen bonds of H atoms of the molecules with O surface atoms. Dispersion also contributes to the final interaction energies. Each surface/molecule complex has also been characterized by computing its harmonic vibrational spectrum, in which the most significant frequency perturbations caused by the surface interaction are described. With the calculated interaction energies, a trend of the intrinsic affinity of the probe molecules with the silicate surface has been obtained. However, this affinity scale does not correlate with the experimental abundances of the class of compounds found in the Murchison meteorite. A brief discussion of this lack of correlation and the factors that can help us to understand the abundances is provided.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app