Add like
Add dislike
Add to saved papers

Higher-Order Energies for Image Segmentation.

A novel energy minimization method for general higher-order binary energy functions is proposed in this paper. We first relax a discrete higher-order function to a continuous one, and use the Taylor expansion to obtain an approximate lower-order function, which is optimized by the quadratic pseudo-boolean optimization (QPBO) or other discrete optimizers. The minimum solution of this lower-order function is then used as a new local point, where we expand the original higher-order energy function again. Our algorithm does not restrict to any specific form of the higher-order binary function or bring in extra auxiliary variables. For concreteness, we show an application of segmentation with the appearance entropy, which is efficiently solved by our method. Experimental results demonstrate that our method outperforms state-of-the-art methods.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app