Add like
Add dislike
Add to saved papers

Compressed sensing magnetic resonance imaging based on shearlet sparsity and nonlocal total variation.

Compressed sensing (CS) has been utilized for acceleration of data acquisition in magnetic resonance imaging (MRI). MR images can then be reconstructed with an undersampling rate significantly lower than that required by the Nyquist sampling criterion. However, the CS usually produces images with artifacts, especially at high reduction rates. We propose a CS MRI method called shearlet sparsity and nonlocal total variation (SS-NLTV) that exploits SS-NLTV regularization. The shearlet transform is an optimal sparsifying transform with excellent directional sensitivity compared with that by wavelet transform. The NLTV, on the other hand, extends the TV regularizer to a nonlocal variant that can preserve both textures and structures and produce sharper images. We have explored an approach of combining alternating direction method of multipliers (ADMM), splitting variables technique, and adaptive weighting to solve the formulated optimization problem. The proposed SS-NLTV method is evaluated experimentally and compared with the previously reported high-performance methods. Results demonstrate a significant improvement of compressed MR image reconstruction on four medical MRI datasets.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app