Add like
Add dislike
Add to saved papers

Diclofenac Inhibits 27-hydroxycholesterol-induced Differentiation of Monocytic Cells into Mature Dendritic Cells.

Immune Network 2017 June
We investigated whether diclofenac could influence the development of antigen-presenting cells in an oxygenated cholesterol-rich environment by determining its effects on the 27-hydroxycholesterol (27OHChol)-induced differentiation of monocytic cells into mature dendritic cells (mDCs). Treatment of human THP-1 monocytic cells with diclofenac antagonized the effects of 27OHChol by attenuating dendrite formation and cell attachment and promoting endocytic function. Diclofenac inhibited the transcription and surface expression of the mDC markers of CD80, CD83, and CD88, and reduced the 27OHChol-induced elevation of surface levels of MHC class I and II molecules to the basal levels in a dose-dependent manner. It also reduced the expression of CD197, a molecule involved in DC homing and migration. These results indicate that diclofenac inhibits the differentiation of monocytic cells into mDCs, thereby potentially modulating adaptive immune responses in a milieu rich in cholesterol oxidation products.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app