Add like
Add dislike
Add to saved papers

Single-block pulse-on electro-optic Q-switch made of LiNbO 3.

Scientific Reports 2017 July 6
A novel LiNbO3 (lithium niobate, LN) electro-optic (EO) Q-switch that can independently operate in the pulse-on regime without the assistance of a quarter-wave plate (QWP) or analyzer was designed and demonstrated. By theoretical analysis and calculations, the proper orientation of the LN was determined to be θ = 1.7° and φ = ±45°, and the quarter-wave voltage was identical to that of a conventional LN EO Q-switch. Additionally, the possible influences caused by the small angular variation between the wave normal and optic axis were found to be negligible. To the best of our knowledge, this is the first time that a LN crystal has been (xztw)-1.2°/1.2°-cut and used successfully in a pulse-on cavity without using a QWP or analyzer. The performance of the novel Q-switched laser and its temperature dependence were verified to be almost identical to those of a conventional pulse-on LN EO Q-switched laser, which strongly demonstrates the practicability of our novel Q-switch. This novel Q-switch design enables a more compact, lossless and stable laser cavity, which is of great concern for engineering applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app