Add like
Add dislike
Add to saved papers

Sulfonated reduced graphene oxide catalyzed cyclization of hydrazides and carbon dioxide to 1,3,4-oxadiazoles under sonication.

Scientific Reports 2017 July 6
Acid catalysts facilitate many chemical reactions. Sulfonated reduced grapheneoxide (rGOPhSO3H) has shown to be an encouraging solid acid catalyst because of its efficiency, cost-effectiveness and safety of use. In this study, we prepared the rGOPhSO3H nano acid catalyst, with the introduction of aromatic sulfonic acid radicals onto GO by fractional removal of oxygenated functions. It was thoroughly characterized by FT-IR, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, energy dispersive spectroscopy (EDS) and solid state (13)C MAS NMR (SSNMR). Here we report the conversion of CO2 (1.0 atm pressure, at = 50 °C, the source of C1 carbon feed stock) with hydrazides and a catalytic amount rGOPhSO3H, which through a cyclization reaction results in a new strategy for the synthesis of 5-substituted-3H-[1,3,4]-oxadiazol-2-ones (SOxdOs) under ultrasonic irradiation. Hence this concept of cyclization opens up for new insights.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app