Add like
Add dislike
Add to saved papers

Potential of lipoproteins as biomarkers in acute myocardial infarction.

Acute myocardial infarction (AMI), commonly known as heart attack, is a medical emergency that is potentially fatal if not promptly and properly managed. The early diagnosis of AMI is critically important for the timely institution of pharmacotherapy to prevent myocardial damage and preserve cardiac function. Ischemic insults during AMI cause myocardial tissue damage, releasing the cardiac muscle protein troponin T into the blood stream. Therefore, serum troponin T levels are used as a sensitive and specific indicator of myocardial injury for diagnosing AMI. However, there remains a requirement for developing technologies for more accurate biomarkers or signatures for AMI diagnosis or prognosis. Previous studies have implicated impaired lipid metabolism as a causative factor in AMI development. Lipoproteins are important constituents of lipid metabolism; their levels in the blood stream are a convenient biomarker tool for monitoring lipid metabolism. This review summarizes recent findings (data of studies from 2001 to 2016) regarding the biomarker potentials of various lipoproteins, including low-density lipoprotein, oxidized low-density lipoprotein, high-density lipoprotein, lipoprotein-a, and remnant lipoprotein, for the risk stratification of AMI.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app