Add like
Add dislike
Add to saved papers

Chitinase from Pseudomonas fluorescens and its insecticidal activity against Helopeltis theivora.

The tea mosquito bug (TMB), Helopeltis spp. (Hemiptera: Miridae) is an insidious pest that poses a significant economical threat to tea plantations. Pseudomonas cultures are being used extensively for pest management which, however, resulting in a low mortality rate of insects and which has prompted us to search for a new microbial metabolite for TMB control. A chitinase purified from P. fluorescens and partially characterized by our group showed insecticidal activity against TMB. The mode of action behind chitinase toxicity is the enzymatic hydrolysis of chitin, which is a common constituent of the insect exoskeleton and gut lining of the peritrophic membrane. A chitinase-secreting strain MP-13 was characterized based on 16S rRNA sequencing and validated as Pseudomonas fluorescens. In the present study, purified chitinase (0.048 units/ml) enzyme from P. fluorescens MP-13 revealed 100% TMB mortality under in-vitro conditions. The results of this study can be utilized for future crop improvement programs and integrated pest management strategies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app