Add like
Add dislike
Add to saved papers

Effects of the interface roughness in metal-adhesive-metal structure on the propagation of shear horizontal waves.

The influence of the interface roughness in a three-layer metal-adhesive-metal structure on the propagation of shear horizontal waves and more particularly on the transmission coefficient versus the frequency is studied in the particular case of a periodic grating of triangular grooves. For given phonon frequencies, the interaction of an incident shear horizontal mode with the periodical grating gives rise to a retro-converted mode. A numerical finite element simulation permits us to predict the existence of the phonon mode in the three-layer structure and to obtain the evolution of the transmission coefficient around the phonon frequency. An experimental study, based on a generation of waves by a piezocomposite contact transducer and a reception by a laser vibrometer, then confirms these predictions. Finally, a parametric numerical study is performed: the influence of the depth of the roughness and of the number of spatial periods of the grooves on the transmission coefficient is studied.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app