Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

A Burkholderia endophyte of the ancient maize landrace Chapalote utilizes c-di-GMP-dependent and independent signaling to suppress diverse plant fungal pathogen targets.

Chapalote is a maize (corn) landrace grown continuously by subsistence farmers in the Americas since 1000 BC, valued in part for its broad-spectrum pathogen resistance. Previously, we showed that Chapalote possesses a bacterial endophyte, Burkholderia gladioli strain 3A12, which suppresses growth of Sclerotinia homoeocarpa, a fungal pathogen of a maize relative, used as a model system. Ten mutants that lost the anti-pathogen activities were identified, corresponding to five genes. However, S. homoeocarpa is not a known maize pathogen; hence, the relevance of these anti-fungal mechanisms to its ancient host has not been clear. Here, the strain 3A12 mutants were tested against a known pathogen of maize and many crops, Rhizoctonia solani. Microscopy established that wild-type 3A12 swarms towards, and attaches onto, the pathogen, forming microcolonies, resulting in hyphal cleavage. Analysis of the mutants revealed that 3A12 uses common downstream gene products (e.g. fungicides) to suppress the growth of both S. homoeocarpa and R. solani, but apparently different upstream regulatory machinery, with the former, but not latter pathogen, requiring YajQ, a receptor for the secondary messenger c-di-GMP. We conclude that B. gladioli strain 3A12, an endophyte of an ancient maize, employs both c-di-GMP-dependent and independent signaling to target diverse fungal pathogens.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app