Add like
Add dislike
Add to saved papers

Global Longitudinal Strain or Left Ventricular Twist and Torsion? Which Correlates Best with Ejection Fraction?

Background: Estimative of left ventricular ejection fraction (LVEF) is a major indication for echocardiography. Speckle tracking echocardiography (STE) allows analysis of LV contraction mechanics which includes global longitudinal strain (GLS) and twist/torsion, both the most widely used. Direct comparison of correlations between these novel parameters and LVEF has never been done before.

Objective: This study aims to check which one has the highest correlation with LVEF.

Methods: Patients with normal LVEF (> 0,55) and systolic dysfunction (LVEF <0,55) were prospectively enrolled, and underwent echocardiogram with STE analysis. Correlation of variables was performed by linear regression analysis. In addition, correlation among levels of LV systolic impairment was also tested.

Results: A total of 131 patients were included (mean age, 46 ± 14y; 43%, men). LVEF and GLS showed a strong correlation (r = 0.95; r2 = 0.89; p < 0.001), more evident in groups with LV systolic dysfunction than those with preserved LVEF. Good correlation was also found with global longitudinal strain rate (r = 0.85; r2 = 0.73; p < 0.001). Comparing to GLS, correlation of LVEF and torsional mechanics was weaker: twist (r = 0.78; r2 = 0.60; p < 0.001); torsion (r = 0.75; r2 = 0.56; p < 0.001).

Conclusion: GLS of the left ventricle have highly strong positive correlation with the classical parameter of ejection fraction, especially in cases with LV systolic impairment. Longitudinal strain rate also demonstrated a good correlation. GLS increments analysis of LV systolic function. On the other hand, although being a cornerstone of LV mechanics, twist and torsion have a weaker correlation with LV ejection, comparing to GLS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app