Add like
Add dislike
Add to saved papers

Deformable Parts Correlation Filters for Robust Visual Tracking.

Deformable parts models show a great potential in tracking by principally addressing nonrigid object deformations and self occlusions, but according to recent benchmarks, they often lag behind the holistic approaches. The reason is that potentially large number of degrees of freedom have to be estimated for object localization and simplifications of the constellation topology are often assumed to make the inference tractable. We present a new formulation of the constellation model with correlation filters that treats the geometric and visual constraints within a single convex cost function and derive a highly efficient optimization for maximum a posteriori inference of a fully connected constellation. We propose a tracker that models the object at two levels of detail. The coarse level corresponds a root correlation filter and a novel color model for approximate object localization, while the mid-level representation is composed of the new deformable constellation of correlation filters that refine the object location. The resulting tracker is rigorously analyzed on a highly challenging OTB, VOT2014, and VOT2015 benchmarks, exhibits a state-of-the-art performance and runs in real-time.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app