Add like
Add dislike
Add to saved papers

Multistability of Recurrent Neural Networks With Nonmonotonic Activation Functions and Unbounded Time-Varying Delays.

This paper is concerned with the coexistence of multiple equilibrium points and dynamical behaviors of recurrent neural networks with nonmonotonic activation functions and unbounded time-varying delays. Based on a state space partition by using the geometrical properties of the activation functions, it is revealed that an -neuron neural network can exhibit equilibrium points with . In particular, several sufficient criteria are proposed to ascertain the asymptotical stability of equilibrium points for recurrent neural networks. These theoretical results cover both monostability and multistability. Furthermore, the attraction basins of asymptotically stable equilibrium points are estimated. It is shown that the attraction basins of the stable equilibrium points can be larger than their originally partitioned subsets. Finally, the results are illustrated by using the simulation results of four examples.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app