Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Negative Thermal Expansion of Ultrathin Metal Nanowires: A Computational Study.

Nano Letters 2017 August 10
Most materials expand upon heating because the coefficient of thermal expansion (CTE), the fundamental property of materials characterizing the mechanical response of the materials to heating, is positive. There have been some reports of materials that exhibit negative thermal expansion (NTE), but most of these have been in complex alloys, where NTE originates from the transverse vibrations of the materials. Here, we show using molecular dynamics simulations that some single crystal monatomic FCC metal nanowires can exhibit NTE along the length direction due to a novel thermomechanical coupling. We develop an analytic model for the CTE in nanowires that is a function of the surface stress, elastic modulus, and nanowire size. The model suggests that the CTE of nanowires can be reduced due to elastic softening of the materials and also due to surface stress. For the nanowires, the model predicts that the CTE reduction can lead to NTE if the nanowire Young's modulus is sufficiently reduced while the nanowire surface stress remains sufficiently large, which is in excellent agreement with the molecular dynamics simulation results. Overall, we find a "smaller is smaller" trend for the CTE of nanowires, leading to this unexpected, surface-stress-driven mechanism for NTE in nanoscale materials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app