JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Water-Proton Relaxivities of Radical Nanoparticles Self-Assembled via Hydration or Dehydration Processes.

Nanoparticles capable of accumulating in tumor tissues are promising materials for tumor imaging and therapy. In this study, two radical nanoparticles (RNPs), denoted as 1 and 2, composed of self-assembled ureabenzene derivatives possessing one or two amphiphilic side chains were demonstrated to be candidates for metal-free functional magnetic resonance imaging (MRI) contrast agents (CAs). Because of the self-assembly behavior of 1 and 2 in a saline solution, spherical RNPs of sizes ∼50-90 and ∼30-100 nm were detected. In a highly concentrated solution, RNP 1 showed considerably small water-proton relaxivity values (r1 and r2 ), whereas RNP 2 showed an r1 value that was around 5 times larger than that of RNP 1. These distinct r1 values might be caused by differences in the self-assembly behavior by a hydration or dehydration process. In vivo studies with RNP 2 demonstrated a slightly enhanced T1 -weighted image in mice, suggesting that the RNPs can potentially be used as metal-free functional MRI CAs for T1 -weighted imaging.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app