Add like
Add dislike
Add to saved papers

Detection of Extracellular Vesicles Using Proximity Ligation Assay with Flow Cytometry Readout-ExoPLA.

Extracellular vesicles (EVs) are continuously released by most cells, and they carry surface markers of their cells of origin. Found in all body fluids, EVs function as conveyers of cellular information, and evidence implicates them as markers of disease. These characteristics make EVs attractive diagnostic targets. However, detection and characterization of EVs is challenging due to their small size. We've established a method, called ExoPLA, that allows individual EVs to be detected and characterized at high specificity and sensitivity. Based on the in situ proximity ligation assay (in situ PLA), proximal oligonucleotide-conjugated antibodies bound to their targets on the surfaces of the EVs allow formation of circular products that can be fluorescently labeled by rolling circle amplification. The intense fluorescent signals produced in this assay allow detection and enumeration of individual EVs by flow cytometry. We describe the procedures for ExoPLA, along with expected results and troubleshooting. © 2017 by John Wiley & Sons, Inc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app