Add like
Add dislike
Add to saved papers

MicroRNA and target mRNA selection through invasion and cytotoxicity cell modeling and bioinformatics approaches in esophageal squamous cell carcinoma.

Oncology Reports 2017 August
This study analyzed microRNA (miRNA) and mRNA expression profiles and investigated the biological characteristics of ESCC by using invasion and cytotoxicity cell models. miRNA profiles were evaluated through miRNA microarray. Transwell chamber and nedaplatin (NDP) were used to construct invasion and cytotoxicity cell models. Invasion Transwell and cytotoxicity assays were performed to examine the invasiveness and proliferation in the cell models. Functional miRNAs were selected from dysregulated miRNAs through qRT-PCR. Biometric Research Program (BRB)-array tools, Cytoscape plugins, and DAVID were utilized to find potential mRNAs targeted by these two miRNAs between ESCC and paired normal adjacent tissues. Our microarray obtained 11 dysregulated miRNAs expressed in three paired ESCC samples from Kazakhs (ethnicity in Northwestern China). qRT-PCR demonstrated the miRNA expression in the invasion and cytotoxicity cell models. miR‑652-5p and miR‑21‑5p exhibited a consistent expression level in the microarray and cell models. Bioinformatics revealed that the potential targets of PLD1, MSH2, STC1, and DSG1 might be involved in ESCC invasion and proliferation. Cell models with bioinformatics approaches may help distinguish functional genes. miR‑652-5p, miR‑21‑5p, and their potential target genes may participate in ESCC development and metastasis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app