Add like
Add dislike
Add to saved papers

Baicalin prevents the apoptosis of endplate chondrocytes by inhibiting the oxidative stress induced by H2O2.

Osteoarthritis (OA) is a degenerative disease of articular cartilage. The pathogenesis of OA remains to be fully elucidated, and several studies have found that oxidative stress is important in its pathogenesis. Baicalin is well known and has already been investigated for its role of inhibiting the oxidative stress pathway. Thus, the present study aimed to investigate the role of baicalin on the inhibition of oxidative stress in endplate chondrocytes induced by hydrogen peroxide (H2O2). Following treatment of endplate chondrocytes with different doses of H2O2 with or without baicalin for different incubation durations, a CCK‑8 assay and Annexin V/PI staining were used to measure the cell proliferation and apoptotic rates to identify the optimal experimental conditions. Subsequently, for examining the effects and underlying mechanism of baicalin on oxidative stress, the protein expression levels of cleaved‑poly (ADP‑ribose) polymerase (PARP), B‑cell lymphoma‑2‑associated X protein (Bax) and pro‑caspase‑3 were analyzed using western blot analysis, intracellular anti‑oxidant activities, including those of malondialdehyde (MDA), superoxide dismutase (SOD) and nitric oxide (NO), were quantified, and the levels of endothelial nitric oxide synthase (eNOS) were examined using reverse transcription‑polymerase chain reaction analysis. The results revealed that the oxidative stress of endplate chondrocytes induced by 0.5 mM H2O2 for 4 h were the most appropriate conditions for experiments, and pretreatment with 100 µmol/l baicalin for 1 h effectively reversed the effect of H2O2 on the endplate chondrocytes. In addition, Annexin V/PI staining demonstrated that the cell death induced by H2O2 was apoptotic, and baicalin reversed the apoptosis induced by oxidative stress. H2O2 activated PARP cleavage, and the expression of Bax and pro‑caspase‑3; however, baicalin inhibited the expression of these apoptotic signaling indicators. Baicalin also reduced the levels of MDA, and increased the levels of SOD and NO. Baicalin also significantly elevated the mRNA levels of eNOS in endplate chondrocytes. Therefore, the results of the present study showed that baicalin significantly inhibited the oxidative stress in endplate chondrocytes induced by H2O2, and decreased cell apoptosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app