Add like
Add dislike
Add to saved papers

Regulation of retinoic acid synthetic enzymes by WT1 and HDAC inhibitors in 293 cells.

All-trans retinoic acid (atRA), which is mainly generated endogenously via two steps of oxidation from vitamin A (retinol), plays an indispensible role in the development of the kidney and many other organs. Enzymes that catalyze the oxidation of retinol to generate atRA, including aldehyde dehydrogenase 1 family (ALDH1)A1, ALDH1A2 and ALDH1A3, exhibit complex expression patterns at different stages of renal development. However, molecular triggers that control these differential expression levels are poorly understood. In this study, we provide in vitro evidence to demonstrate that Wilms' tumor 1 (WT1) negatively regulates the expression of the atRA synthetic enzymes, ALDH1A1, ALDH1A2 and ALDH1A3, in the 293 cell line, leading to significant blockage of atRA production. Furthermore, we demonstrate that the suppression of ALDH1A1 by WT1 can be markedly attenuated by histone deacetylase inhibitors (HDACis). Taken together, we provide evidence to indicate that WT1 and HDACs are strong regulators of endogenous retinoic acid synthetic enzymes in 293 cells, indicating that they may be involved in the regulation of atRA synthesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app