Add like
Add dislike
Add to saved papers

Quantitative Evaluation of Drug Resistance Profile of Cells Expressing Wild-Type or Genetic Polymorphic Variants of the Human ABC Transporter ABCC4.

Broad-spectrum resistance in cancer cells is often caused by the overexpression of ABC transporters; which varies across individuals because of genetic single-nucleotide polymorphisms (SNPs). In the present study; we focused on human ABCC4 and established cells expressing the wild-type (WT) or SNP variants of human ABCC4 using the Flp-In™ system (Invitrogen, Life Technologies Corp, Carlsbad, CA, USA) based on Flp recombinase-mediated transfection to quantitatively evaluate the effects of nonsynonymous SNPs on the drug resistance profiles of cells. The mRNA levels of the cells expressing each ABCC4 variant were comparable. 3-(4,5-Dimethyl-2-thiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay clearly indicated that the EC50 values of azathioprine against cells expressing ABCC4 (WT) were 1.4-1.7-fold higher than those against cells expressing SNP variants of ABCC4 (M184K; N297S; K304N or E757K). EC50 values of 6-mercaptopurine or 7-Ethyl-10-hydroxy-camptothecin (SN-38) against cells expressing ABCC4 (WT) were also 1.4-2.0- or 1.9-fold higher than those against cells expressing the SNP variants of ABCC4 (K304N or E757K) or (K304N; P403L or E757K); respectively. These results indicate that the effects of nonsynonymous SNPs on the drug resistance profiles of cells expressing ABCC4 can be quantitatively evaluated using the Flp-In™ system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app