JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

The Role of K + -Cl - -Cotransporter-2 in Neuropathic Pain.

The pain sensory system normally functions under a fine balance between excitation and inhibition. When this balance is perturbed for some reason, it leads to neuropathic pain. There is accumulating evidence that attributes this pain generation to specific dysfunctions of the inhibitory system in the spinal cord. One possible mechanism leading to the induction of these dysfunctions is the down-regulation of K+ -Cl- -cotransporter-2 (KCC2) expression. In fact, various neuropathic pain models indicate a decrease of KCC2 expression in the spinal cord. The alteration of KCC2 expression affects GABAergic and glycinergic neurotransmissions, because KCC2 is a potassium-chloride exporter and serves to maintain intracellular chloride concentration. When there is a low level of KCC2 expression, GABAergic and glycinergic neurotransmissions transform from inhibitory signals to excitatory signals. In this review, the hypothesis that an alteration of KCC2 expression has a crucial influence on the initiation/development or maintenance of neuropathic pain is discussed. In addition, it is suggested that the alteration of inhibitory signals is dependent on the time after peripheral nerve injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app