Add like
Add dislike
Add to saved papers

Liver X Receptor Gene Expression is Enhanced in Children with Obstructive Sleep Apnea-Hyperpnoea Syndrome and Cyclooxygenase-2 (COX-2) is Correlated with Severity of Obstructive Sleep Apnea-Hypopnea Syndrome (OSAHS).

BACKGROUND Liver X receptor (LXR) is a nuclear receptor presenting in macrophages; it works indispensably in lipid metabolism control and also negatively regulates the expression of inflammatory genes in macrophages. There are many LXR-related studies in adults with metabolic syndrome but rare reports in obese children with obstructive sleep apnea-hypopnea syndrome (OSAHS). The aim of this study was to investigate the expression of LXR, cholesterol ester transfer protein (CETP), and cyclooxygenase-2 (COX-2) genes in obese children with OSAHS compared with obese children without OSAHS and non-obese children. MATERIAL AND METHODS Sleep monitoring was conducted in 80 obese children with sleep disorders. Fasting morning blood samples from the 80 obese children and 51 normal children were collected and separated, so that macrophages were obtained after culture. Fluorescence quantitative real-time PCR (RT-PCR) was used to detect expression levels of the LXR, CETP, and COX-2 genes. RESULTS LXR, COX-2, and CETP levels in the OSAHS group were higher than those in the other two groups (P<0.05), and the LXR levels in the group of obese children without OSAHS were higher than those in control group (P<0.05). COX-2 expression in the group with moderate to severe OSAHS was higher than that in the group with mild OSAHS (P<0.05). Meanwhile, there were no significant differences in the LXR and CETP levels between the moderate to severe OSAHS group and the mild OSAHS group (P>0.05). CONCLUSIONS LXR gene expression was significantly increased in obese children with OSAHS. The severity of OSAHS was positively correlated with COX-2 levels.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app