Add like
Add dislike
Add to saved papers

Quantitative proteomic analysis of iron-regulated outer membrane proteins in Aeromonas hydrophila as potential vaccine candidates.

The iron-regulated outer membrane protein (OMP) of Aeromonas hydrophila is an effective vaccine candidate, but its intrinsic functional components are largely unknown. In this study, we compared the differentially expressed sarcosine-insoluble fractions of A. hydrophila in iron-limited and normal medium using tandem mass tag labeling-based quantitative proteomics, and identified 91 upregulated proteins including 21 OMPs and 83 downregulated proteins including 10 OMPs. Subsequent bioinformatics analysis showed that iron chelate transport-related proteins were enriched in increasing abundance, whereas oxidoreductase activity and translation-related proteins were significantly enriched in decreasing abundance. The proteomics results were further validated in selected altered proteins by Western blotting. Finally, the vaccine efficacy of five iron-related recombinant OMPs (A0KGW8, A0KFG8, A0KQ46, A0KIU8, and A0KQZ1) that were increased abundance in iron-limited medium, were evaluated when challenged with virulent A. hydrophila against zebrafish, suggesting that these proteins had highly efficient immunoprotectivity. Our results indicate that quantitative proteomics combined with evaluation of vaccine efficacy is an effective strategy for screening novel recombinant antigens for vaccine development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app