Add like
Add dislike
Add to saved papers

Synthesis, Structural Characterization and Antinociceptive Activities of New Arylated Quinolines via Suzuki-Miyaura Cross Coupling Reaction.

BACKGROUND: The quinoline ring system is one of the most commonly encountered heterocycles in medicinal chemistry, due to the pharmaceutical and medicinal uses of derivatives containing this ring. These quinoline-based compounds have remarkable biological activity, as they are employed as antimalarial, antibacterial, antifungal, and antitumor agents. The quinoline nucleus can be synthesized by various traditional methods such as the Skraup reaction, Friedlaender synthesis, Combes quinoline synthesis, Larock quinoline synthesis, among others.

METHODS: The aim of the present work is to synthesize a number of new arylated quninolines having significant antinoceciptive effect through the Suzuki-Miyaura cross coupling reaction using 3- bromoquinoline as a starting material.

RESULTS: A number of new quinoline derivatives have been synthesized. Structures of the newly synthesized compounds were confirmed by means of IR, NMR, and mass spectrometry, and by elemental analysis. In addition, the molecular structures of two representative derivatives were determined with the aid of X-ray crystallography. Additionally, the antinociceptive activity of the prepared compounds was evaluated in vivo; results revealed that most of the tested compounds exhibited a dosedependent antinociceptive effect.

CONCLUSION: Prepared compounds were found to exhibit significant antinociceptive activities and could be used as potential analgesic agents. Further work, however, may be required to establish the safety and efficacy of these compounds.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app