Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Disrupted hippocampal neuregulin-1/ErbB3 signaling and dentate gyrus granule cell alterations in suicide.

Neuregulin-1 (NRG1) and ErbB receptors have been associated with psychopathology, and NRG1-ErbB3 signaling has been shown to increase hippocampal neurogenesis and induce antidepressant-like effects. In this study, we aimed to determine whether deficits in NRG1 or ErbBs might be present in the hippocampus of suicide completers. In well-characterized postmortem hippocampal samples from suicides and matched sudden-death controls, we assessed gene expression and methylation using qRT-PCR and EpiTYPER, respectively. Moreover, in hippocampal tissues stained with cresyl violet, stereology was used to quantify numbers of granule cells and of glia. Granule cell body size was examined with a nucleator probe, and granule cell layer volume with a Cavalieri probe. Unmedicated suicides showed sharply decreased hippocampal ErbB3 expression and decreased numbers of ErbB3-expressing granule cell neurons in the anterior dentate gyrus; a phenomenon seemingly reversed by antidepressant treatment. Furthermore, we found ErbB3 expression to be significantly decreased in the dentate gyrus of adult mice exposed to chronic social defeat stress. Taken together, these results reveal novel suicidal endophenotypes in the hippocampus, as well as a putative etiological mechanism underlying suicidality, and suggest that antidepressant or NRG1 treatment may reverse a potential deficit in anterior dentate gyrus granule cell neurons in individuals at risk of dying by suicide.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app