JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Norrin-induced Frizzled4 endocytosis and endo-lysosomal trafficking control retinal angiogenesis and barrier function.

Angiogenesis and blood-brain barrier formation are required for normal central nervous system (CNS) function. Both processes are controlled by Wnt or Norrin (NDP) ligands, Frizzled (FZD) receptors, and β-catenin-dependent signalling in vascular endothelial cells. In the retina, FZD4 and the ligand NDP are critical mediators of signalling and are mutated in familial exudative vitreoretinopathy. Here, we report that NDP is a potent trigger of FZD4 ubiquitination and induces internalization of the NDP receptor complex into the endo-lysosomal compartment. Inhibition of ubiquitinated cargo transport through the multivesicular body (MVB) pathway using a dominant negative ESCRT (endosomal sorting complexes required for transport) component VPS4 EQ strongly impairs NDP/FZD4 signalling in vitro and recapitulates CNS angiogenesis and blood-CNS-barrier defects caused by impaired vascular β-catenin signalling in mice. These findings provide evidence for an important role of FZD4 endocytosis in NDP/FZD4 signalling and in CNS vascular biology and disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app