Add like
Add dislike
Add to saved papers

Importance of material parameters and strain energy function on the wall stresses in the left ventricle.

Patient-specific estimates of the stress distribution in the left ventricles (LV) may have important applications for therapy planning, but computing the stress generally requires knowledge of the material behaviour. The passive stress-strain relation of myocardial tissue has been characterized by a number of models, but material parameters (MPs) remain difficult to estimate. The aim of this study is to implement a zero-pressure algorithm to reconstruct numerically the stress distribution in the LV without precise knowledge of MPs. We investigate the sensitivity of the stress distribution to variations in the different sets of constitutive parameters. We show that the sensitivity of the LV stresses to MPs can be marginal for an isotropic constitutive model. However, when using a transversely isotropic exponential strain energy function, the LV stresses become sensitive to MPs, especially to the linear elastic coefficient before the exponential function. This indicates that in-vivo identification efforts should focus mostly on this MP for the development of patient-specific finite-element analysis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app