Add like
Add dislike
Add to saved papers

Characterization of a half-pipe-like leaf1 mutant that exhibits a curled leaf phenotype.

Leaf forms are diverse in angiosperms, and different types of cells are differentiated depending on the species. Rice leaves are composed of a leaf blade, a leaf sheath and the junction region between them. Cells with characteristic features, such as bulliform cells and sclerenchyma cells, are differentiated in the leaf blade, together with standard epidermal and mesophyll cells. To understand the genetic mechanism underlying leaf morphogenesis in rice, we focused on a mutant, half-pipe-like leaf1 (hal1), whose leaves are adaxially curled. Histological observation revealed that the bulliform cells, which are responsible for leaf rolling under dry conditions, were small in size and abnormal in shape in a semidominant hal1-d mutant. Bulliform cell files were often ambiguous in semi-transparent hal1-d leaves cleared by the TOMEI method, suggesting that the bulliform cells were undeveloped. Therefore, a reduction in the growth of the bulliform cells seemed to be a major cause of leaf curling in the hal1-d mutant. The hal1-d mutation also affected the size of the leaf blade and the spikelet.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app