Add like
Add dislike
Add to saved papers

NRF2 Activation Impairs Quiescence and Bone Marrow Reconstitution Capacity of Hematopoietic Stem Cells.

Tissue stem cells are maintained in quiescence under physiological conditions but proliferate and differentiate to replenish mature cells under stressed conditions. The KEAP1-NRF2 system plays an essential role in stress response and cytoprotection against redox disturbance. To clarify the role of the KEAP1-NRF2 system in tissue stem cells, we focused on hematopoiesis in this study and used Keap1 -deficient mice to examine the effects of persistent activation of NRF2 on long-term hematopoietic stem cells (LT-HSCs). We found that persistent activation of NRF2 due to Keap1 deficiency did not change the number of LT-HSCs but reduced their quiescence in steady-state hematopoiesis. During hematopoietic regeneration after bone marrow (BM) transplantation, persistent activation of NRF2 reduced the BM reconstitution capacity of LT-HSCs, suggesting that NRF2 reduces the quiescence of LT-HSCs and promotes their differentiation, leading to eventual exhaustion. Transient activation of NRF2 by an electrophilic reagent also promotes the entry of LT-HSCs into the cell cycle. Taken together, our findings show that NRF2 drives the cell cycle entry and differentiation of LT-HSCs at the expense of their quiescence and maintenance, an effect that appears to be beneficial for prompt recovery from blood loss. We propose that the appropriate control of NRF2 activity by KEAP1 is essential for maintaining HSCs and guarantees their stress-induced regenerative response.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app