Add like
Add dislike
Add to saved papers

PRAS40 Connects Microenvironmental Stress Signaling to Exosome-Mediated Secretion.

Secreted exosomes carrying lipids, proteins, and nucleic acids conduct cell-cell communications within the microenvironment of both physiological and pathological conditions. Exosome secretion is triggered by extracellular or intracellular stress signals. Little is known, however, about the signal transduction between stress cues and exosome secretion. To identify the linker protein, we took advantage of a unique finding in human keratinocytes. In these cells, although transforming growth factor alpha (TGF-α) and epidermal growth factor (EGF) share the same EGF receptor and previously indistinguishable intracellular signaling networks, only TGF-α stimulation causes exosome-mediated secretion. However, deduction of EGF-activated pathways from TGFα-activated pathways in the same cells allowed us to identify the proline-rich Akt substrate of 40 kDa (PRAS40) as the unique downstream effector of TGF-α but not EGF signaling via threonine 308-phosphorylated Akt. PRAS40 knockdown (KD) or PRAS40 dominant-negative (DN) mutant overexpression blocks not only TGF-α- but also hypoxia- and H2 O2 -induced exosome secretion in a variety of normal and tumor cells. Site-directed mutagenesis and gene rescue studies show that Akt-mediated activation of PRAS40 via threonine 246 phosphorylation is both necessary and sufficient to cause exosome secretion without affecting the endoplasmic reticulum/Golgi pathway. Identification of PRAS40 as a linker protein paves the way for understanding how stress regulates exosome secretion under pathophysiological conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app