Add like
Add dislike
Add to saved papers

In Vivo Emergence of Resistance to Novel Cephalosporin-β-Lactamase Inhibitor Combinations through the Duplication of Amino Acid D149 from OXA-2 β-Lactamase (OXA-539) in Sequence Type 235 Pseudomonas aeruginosa.

Resistance development to novel cephalosporin-β-lactamase inhibitor combinations during ceftazidime treatment of a surgical infection by Pseudomonas aeruginosa was investigated. Both initial (97C2) and final (98G1) isolates belonged to the high-risk clone sequence type (ST) 235 and were resistant to carbapenems ( oprD ), fluoroquinolones (GyrA-T83I, ParC-S87L), and aminoglycosides ( aacA7/aacA8/aadA6 ). 98G1 also showed resistance to ceftazidime, ceftazidime-avibactam, and ceftolozane-tazobactam. Sequencing identified bla OXA-2 in 97C2, but 98G1 contained a 3-bp insertion leading to the duplication of the key residue D149 (designated OXA-539). Evaluation of PAO1 transformants producing cloned OXA-2 or OXA-539 confirmed that D149 duplication was the cause of resistance. Active surveillance of the emergence of resistance to these new valuable agents is warranted.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app