JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, N.I.H., INTRAMURAL
Add like
Add dislike
Add to saved papers

Modeling HCV cure after an ultra-short duration of therapy with direct acting agents.

Antiviral Research 2017 August
BACKGROUND: Cases of sustained-virological response (SVR or cure) after an ultra-short duration (≤27 days) of direct-acting antiviral (DAA)-based therapy, despite HCV being detected at end of treatment (EOT), have been reported. Established HCV mathematical models that predict the treatment duration required to achieve cure do not take into account the possibility that the infectivity of virus produced during treatment might be reduced. The aim of this study was to develop a new mathematical model that considers the fundamental and critical concept that HCV RNA in serum represents both infectious virus (Vi ) and non-infectious virus (Vni ) in order to explain the observation of cure with ultrashort DAA therapy.

METHODS: Established HCV models were compared to the new mathematical model to retrospectively explain cure in 2 patients who achieved cure after 24 or 27 days of paritaprevir, ombitasvir, dasabuvir, ritonavir and ribavirin or sofosbuvir plus ribavirin, respectively.

RESULTS: Fitting established models with measured longitudinal HCV viral loads indicated that in both cases, cure would not have been expected without an additional 3-6 weeks of therapy after the actual EOT. In contrast, the new model fits the observed outcome by considering that in addition to blocking Vi and Vni production (ε∼0.998), these DAA + ribavirin treatments further enhanced the ratio of Vni to Vi , thus increasing the log (Vni /Vi ) from 1 at pretreatment to 6 by EOT, which led to <1 infectious-virus particle in the extracellular body fluid (i.e., cure) prior to EOT.

CONCLUSIONS: This new model can explain cure after short duration of DAA + ribavirin therapy by suggesting that a minimum 6-fold increase of log (Vni /Vi ) results from drug-induced enhancement of the Vni /Vi .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app