Add like
Add dislike
Add to saved papers

Transcriptional and biochemical analysis of antioxidant enzymes in the mussel Mytilus galloprovincialis during experimental exposures to the toxic dinoflagellate Prorocentrum lima.

The genotoxic and cytotoxic effects of Diarrhetic Shellfish Poisoning (DSP) toxins have been widely investigated in bivalve molluscs, representing the main vectors of these compounds in the Atlantic coast of Europe. DSP toxins are produced by Harmful Algal Blooms (HABs) of Dinophysis and Prorocentrum dinoflagellates, being subsequently accumulated by marine organisms and biomagnified throughout trophic webs. Yet, bivalves display increased resistance to the harmful effects of these toxins during HAB episodes. While previous reports have suggested that such resilience might be the result of an increased activity in the bivalve antioxidant system, very little is still known about the specific mechanism underlying the protective effect observed in these organisms. The present work aims to fill this gap by studying transcriptional expression levels and biochemical activities of antioxidant enzymes in different tissues the mussel Mytilus galloprovincialis during experimental exposures to DSP toxins produced by the dinoflagellate Prorocentrum lima. Results are consistent with the presence of a compensatory mechanism involving a down-regulation in the expression of specific genes encoding antioxidant enzymes [i.e., SuperOxide Dismutase (SOD) and CATalase (CAT)] which is counterbalanced by the up-regulation of other antioxidant genes such as Glutathione S-Transferase pi-1 (GST-pi) and Selenium-dependent Glutathione PeroXidase (Se-GPx), respectively. Enzymatic activity analyses mirror gene expression results, revealing high antioxidant activity levels (consistent with a protective role for the antioxidant system) along with reduced lipid peroxidation (increasing the defense against oxidative stress).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app