Add like
Add dislike
Add to saved papers

Tocotrienol alleviates inflammation and oxidative stress in a rat model of spinal cord injury via suppression of transforming growth factor-β.

In recent years accumulating evidence has indicated that tocotrienol exhibits an oxidation resistance function, decreased cholesterol function, inhibits cancer function and has unique physiological functions, including anti-inflammatory, anti-apoptotic and anti-oxidative properties. The present study investigated the effect of tocotrienols on spinal cord injury (SCI) by evaluating oxidative stress, inflammation and inducible nitric oxide synthase (iNOS) in rats. A rat model of SCI was induced by operation. SCI rats were treated with 120 mg/kg/day tocotrienol once a day for eight consecutive weeks. Functional recovery following SCI was measured by using the Basso Beattie Bresnahan (BBB) locomotor rating scale. Then the volume of spinal cord contusions was measured following induction of SCI in the rats. In SCI rats, serum malondialdehyde, superoxide dismutase, catalase, glutathione peroxidase, nuclear factor-κB p65 unit, tumor necrosis factor-α, interleukin (IL)-1β and IL-6 levels were analyzed using respective commercial immunoassay kits. Firstly, iNOS, transforming growth factor (TGF)-β, collagen type IV and fibronectin protein expression levels, in addition to iNOS activity and plasma nitric oxide (NO) production in SCI rats was analyzed using western blot analysis, commercial kits and Griess reagent, respectively. Tocotrienol treatment elevated BBB scores and contused volume in the SCI rats. Tocotrienol protected against SCI with reduced oxidative stress and inflammation, and inhibited iNOS protein expression iNOS activity and plasma NO production in rats. In addition, treatment with tocotrienols suppressed TGF-β, collagen type IV and fibronectin protein expression levels in SCI rats. These results suggest that tocotrienols protect SCI, and suppress oxidative stress, inflammation and iNOS in this model of SCI through TGF-β, collagen type IV and fibronectin signaling pathways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app