Add like
Add dislike
Add to saved papers

Lipidomics to investigate the pharmacologic mechanisms of ginkgo folium in the hyperuricemic rat model.

Hyperuricemia caused by purine metabolic abnormalities is reported to have close correlation with lipid metabolic disorders. Ginkgo folium, a frequently-used lipid-lowering medicine, has significant anti-hyperuricemia effects. However, it is poorly known about the interaction between lowering uric acid and regulation of lipid metabolic disorders. In this study, hyperuricemic rat model was induced by orally administration with fructose. Ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF/MS) combined with pattern recognition approaches were used to determine different lipid metabolites in serum of control group, model group, and different doses of ginkgo folium groups. Principal component analysis (PCA) was applied to analyze the MS data to assess the establishment of model, partial least squares-discriminate analysis (PLS-DA) and independent samples T-test were performed to indicate the differences between different groups of rats and to find biomarkers. Metabolomics pathway analysis (MetPA) was introduced to reveal the pharmacologic mechanisms of ginkgo folium. 19 potential biomarkers associated with hyperuricemia were found. After intervened by ginkgo folium, these biomarkers were returning to normal level. Among these biomarkers, 13 lipid biomarkers were significantly reversed. Ginkgo filum can lower uric acid via adjusting back the level of PCs and LPCs, which suggested that its treatment mechanisms may be related to reducing the activity of PLA2. In sum, the lipidomics analysis in the system level have enhanced our understanding to pathogenesis of hyperuricemia and the results suggested that ginkgo folium could alleviate the abnormal metabolic status of hyperuricemia. These results demonstrated a new mechanism for lowering uric acid, which was helpful to the early treatment for hyperuricemia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app