Add like
Add dislike
Add to saved papers

The Ca 2+ /calmodulin2-binding transcription factor TGA3 elevates LCD expression and H 2 S production to bolster Cr 6+ tolerance in Arabidopsis.

Plant Journal 2017 September
Heavy metal (HM) contamination on agricultural land not only reduces crop yield but also causes human health concerns. As a plant gasotransmitter, hydrogen sulfide (H2 S) can trigger various defense responses and help reduce accumulation of HMs in plants; however, little is known about the regulatory mechanisms of H2 S signaling. Here, we provide evidence to answer the long-standing question about how H2 S production is elevated in the defense of plants against HM stress. During the response of Arabidopsis to chromium (Cr6+ ) stress, the transcription of L-cysteine desulfhydrase (LCD), the key enzyme for H2 S production, was enhanced through a calcium (Ca2+ )/calmodulin2 (CaM2)-mediated pathway. Biochemistry and molecular biology studies demonstrated that Ca2+ /CaM2 physically interacts with the bZIP transcription factor TGA3, a member of the 'TGACG'-binding factor family, to enhance binding of TGA3 to the LCD promoter and increase LCD transcription, which then promotes the generation of H2 S. Consistent with the roles of TGA3 and CaM2 in activating LCD expression, both cam2 and tga3 loss-of-function mutants have reduced LCD abundance and exhibit increased sensitivity to Cr6+ stress. Accordingly, this study proposes a regulatory pathway for endogenous H2 S generation, indicating that plants respond to Cr6+ stress by adjusting the binding affinity of TGA3 to the LCD promoter, which increases LCD expression and promotes H2 S production. This suggests that manipulation of the endogenous H2 S level through genetic engineering could improve the tolerance of grains to HM stress and increase agricultural production on soil contaminated with HMs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app