Add like
Add dislike
Add to saved papers

Post-nano strategies for drug delivery: Multistage porous silicon microvectors.

Nanodelivery systems usually improve the biodistribution of drugs, leading to reduced side effects and enhanced therapeutic efficacy. However, only a small portion of the injected nanoparticle dose accumulates in pathological tissue. Challenges in drug delivery arise due to a multitude of transport obstacles in the body, including the endothelium, the extracellular matrix, and the cell membrane. In general, nanoparticles are designed to overcome only a few biological barriers, making them inadequate for localized drug delivery. Accordingly, a multifunctional and multicomponent systems are required to effectively address a wide variety of transport obstacles. A suitable approach to obtain high levels of multifunctionality is to bring together the nanoscale with the microscale, resulting in post-nano strategies for drug delivery. This review discusses several such post-nano approaches, with an emphasis on the multistage vector (MSV) platform. The MSV consists of three components on different spatial scales, each intended to address biological barriers that exist in a specific compartment in the body. The first stage vector is a microparticle that is designed to navigate in the vascular compartment. The second stage vector consists of nanoparticles that are released from the microparticle into the tissue interstitium, where they address biological barriers in extracellular and intracellular compartments. The final component of the system is a small molecule therapeutic agent. A new generation of microparticle-based strategies with expanded applications has recently been developed, including injectable nanoparticle generators and silicon particles for immunotherapy. Notably, the advantage of incorporating microstructures in drug delivery vehicles is apparent from the observation that superior functionality only appears on the microscale, highlighting the inherent functional limitations of nanostructures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app