Add like
Add dislike
Add to saved papers

Self-consistent gradient flow for shape optimization.

We present a model for image segmentation and describe a gradient-descent method for level-set based shape optimization. It is commonly known that gradient-descent methods converge slowly due to zig-zag movement. This can also be observed for our problem, especially when sharp edges are present in the image. We interpret this in our specific context to gain a better understanding of the involved difficulties. One way to overcome slow convergence is the use of second-order methods. For our situation, they require derivatives of the potentially noisy image data and are thus undesirable. Hence, we propose a new method that can be interpreted as a self-consistent gradient flow and does not need any derivatives of the image data. It works very well in practice and leads to a far more efficient optimization algorithm. A related idea can also be used to describe the mean-curvature flow of a mean-convex surface. For this, we formulate a mean-curvature Eikonal equation, which allows a numerical propagation of the mean-curvature flow of a surface without explicit time stepping.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app