Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Dynamin regulates the fusion pore of endo- and exocytotic vesicles as revealed by membrane capacitance measurements.

BACKGROUND: Dynamin is a multidomain GTPase exhibiting mechanochemical and catalytic properties involved in vesicle scission from the plasmalemma during endocytosis. New evidence indicates that dynamin is also involved in exocytotic release of catecholamines, suggesting the existence of a dynamin-regulated structure that couples endo- to exocytosis.

METHODS: Thus we here employed high-resolution cell-attached capacitance measurements and super-resolution structured illumination microscopy to directly examine single vesicle interactions with the plasmalemma in cultured rat astrocytes treated with distinct pharmacological modulators of dynamin activity. Fluorescent dextrans and the lipophilic plasmalemmal marker DiD were utilized to monitor uptake and distribution of vesicles in the peri-plasmalemmal space and in the cell cytosol.

RESULTS: Dynamin inhibition with Dynole™-34-2 and Dyngo™-4a prevented vesicle internalization into the cytosol and decreased fusion pore conductance of vesicles that remained attached to the plasmalemma via a narrow fusion pore that lapsed into a state of repetitive opening and closing - flickering. In contrast, the dynamin activator Ryngo™-1-23 promoted vesicle internalization and favored fusion pore closure by prolonging closed and shortening open fusion pore dwell times. Immunocytochemical staining revealed dextran uptake into dynamin-positive vesicles and increased dextran uptake into Syt4- and VAMP2-positive vesicles after dynamin inhibition, indicating prolonged retention of these vesicles at the plasmalemma.

CONCLUSIONS: Our results have provided direct evidence for a role of dynamin in regulation of fusion pore geometry and kinetics of endo- and exocytotic vesicles, indicating that both share a common dynamin-regulated structural intermediate, the fusion pore.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app