Add like
Add dislike
Add to saved papers

The protection of novel 2-arylethenylquinoline derivatives against impairment of associative learning memory induced by neural Aβ in C. elegans Alzheimer's disease model.

Cerebral deposition of amyloid β-peptide (Aβ), a fundamental feature of Alzheimer's disease (AD), damages the neurocytes and impairs the cognition functions and associative learning memory of AD patients. A series of novel 2-arylethenylquinoline derivatives were synthesized and evaluated in our previous study, which inhibited Aβ aggregation in vitro effectively at the concentration of 20 μmol/L and exhibited high antioxidant activity. In order to verify the capacity of anti-AD in vivo, the transgenic Caenorhabditis elegans (C. elegans) strain CL2355 expressing neural Aβ was employed as the AD model to investigate the neuroprotective activity of seven high-potential compounds (4a1, 4a2, 4b1, 4b2, 4c1, 4c2, 4c3) selected from those derivatives. Learning memory associated chemotaxis assay was performed to evaluate the neural repairment capacity. The underlying mechanism was investigated by mRNA analysis of Aβ gene and heat shock protein genes (hsp-16.1 and hsp-16.2) and Western blot of Aβ. Our data indicated that among seven tested compound, 4b1 and 4c2 reduced Aβ-induced stress, suppressed the expression of neural Aβ monomers and toxic oligomers, and recovered the damaged associative learning memory in C. elegans AD model. These findings further confirmed their potentials to become valuable agents for AD therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app