Add like
Add dislike
Add to saved papers

Degradation of chlortetracycline using immobilized laccase on Polyacrylonitrile-biochar composite nanofibrous membrane.

The continuous release of antibiotic compounds through wastewater effluent into environment has raised concerns about their potential problems for different organisms. Enzymatic degradation with laccase is a green option for removal of pharmaceutical compounds from aqueous media. In this study, laccase was immobilized onto homemade Polyacrylonitrile-biochar composite nanofibrous membrane and the obtained biocatalyst was employed for removal of chlortetracycline, a widely used antibiotic, from aqueous media in continuous mode. The results showed that the immobilized laccase has improved storage, temperature and pH stability compared to free laccase. Also, it retained more than 50% of its initial activity after 7cycles of ABTS oxidation which indicated improved enzyme reusability. Finally, while using immobilized laccase for degradation of chlortetracycline in continuous mode exhibited 58.3%, 40.7% and 22.6% chlortetracycline removal efficiency at flux rates of 1, 2 and 3mL/h∙cm2 .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app