JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Optimized FISH methods for visualizing RNA localization properties in Drosophila and human tissues and cultured cells.

Eukaryotic gene expression is orchestrated by a large number of regulatory steps to modulate the synthesis, maturation and fate of various families of protein-coding and non-coding RNA molecules. Defining the subcellular localization properties of an RNA molecule is thus of considerable importance for gleaning its function(s) and for elucidating post-transcriptional gene regulation pathways. For decades, fluorescent In Situ hybridization (FISH) has constituted the gold-standard technique for assessing RNA expression and distribution properties in cultured cells, tissue specimens, and whole mount organisms. Recently, several attempts aimed at advancing multiplex RNA-FISH experiments have been published. However, these procedures are both financially demanding and technically challenging, while their full potential remains unexploited. Here we describe an optimized RNA-FISH method employing the Tyramide Signal Amplification system that robustly enhances resolution and sensitivity needed for exploring RNA localization in Drosophila embryos, tissues and commonly cultured human and insect cell lines. Methodological details and key parameters are outlined for high-throughput analyses conducted in 96-well plate format.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app