Add like
Add dislike
Add to saved papers

Molecular and functional characterisation of two elovl4 elongases involved in the biosynthesis of very long-chain (>C24) polyunsaturated fatty acids in black seabream Acanthopagrus schlegelii.

Elongation of very long-chain fatty acid (Elovl) 4 proteins are important fatty acyl elongases that participate in the biosynthesis of long-chain (C20-24) and very long-chain (˃C24) polyunsaturated fatty acids (LC-PUFA and VLC-PUFA, respectively) in teleost fish, especially in marine species. Moreover, knowledge of Elovl4 and other elongases such as Elovl2 has contributed to an advanced understanding of the LC-PUFA biosynthetic pathway in marine fish. In the present study, elovl4a and elovl4b were cloned from black seabream Acanthopagrus schlegelii and functionally characterised using recombinant expression in yeast. The elovl4a and elovl4b cDNA sequences included open reading frames (ORF) of 969 and 918 base pairs (bp), encoding proteins of 322 and 315 amino acids (aa), respectively. The functional characterisation of A. schlegelii Elovl4 proteins showed they were able to utilise all assayed C18-22 PUFA substrates except 22:6n-3. Moreover, it was particularly noteworthy that both A. schlegelii Elovl4a and Elovl4b proteins had the ability to elongate 20:5n-3 and 22:5n-3 to 24:5n-3, which can be potentially desaturated and β-oxidised to 22:6n-3. Tissue transcript abundance analysis showed the highest expression of elovl4a and elovl4b in brain and eye, respectively, suggesting these tissues were major sites for VLC-PUFA biosynthesis in black seabream. The functions of the A. schlegelii Elovl4-like elongases, Elovl4a and Elovl4b, characterised in the present study, along with those of the Elovl5 and fatty acyl desaturase (Fads2) proteins of A. schlegelii characterised previously, provided evidence of the biosynthetic pathways of LC-PUFA and VLC-PUFA in this teleost species.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app