JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Population genetic analysis informs the invasion history of the emerging trematode Dicrocoelium dendriticum into Canada.

Parasite distributions are constantly changing due to climate change, local and global movement of animals and humans, as well as land use and habitat change. The trematode Dicrocoelium dendriticum is a relatively recent invader of Canada, being first reported in eastern Canada in the 1930s and western Canada in the 1970s. However, historical records are scarce and its emergence is poorly understood. The establishment of this parasite in Canada provides an interesting opportunity to explore the use of population genetic approaches to help elucidate the invasion history of a relatively recently established helminth parasite. In this study, we compare the genetic diversity and population structure of a number of D. dendriticum populations from western and eastern Canada, and compare these with much longer established European populations. Two independent genetic marker systems were used; a microsatellite marker panel and a cytochrome c oxidase 1 (cox1) mitochondrial (mt)DNA sequence marker. We found distinct differences in both genetic diversity and population structure of the different Canadian populations that provide insights into their invasion histories compared with the European populations. Two populations from British Columbia, Canada - Salt Spring and Vancouver Islands - are of low diversity, show evidence of a population bottleneck and are closely related to each other, suggesting a shared recent history of establishment. These west coast populations are otherwise most closely related to those from eastern Canada and western Europe, and in contrast are genetically divergent from those in Cypress Hills, Alberta, Canada. Although the Alberta parasite population is the most recently reported in Canada, being first identified there in the early 1990s, it was the most genetically diverse of those examined and showed a strong pattern of admixture of genotypes present in western and eastern Europe. Overall, our results are consistent with a model in which western Europe is likely the source of flukes on the east coast of Canada, which were then subsequently translocated to the west coast of Canada. The most recently reported D. dendriticum population in Canada appears to have a different history and likely has multiple origins.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app