Add like
Add dislike
Add to saved papers

Application of the spectral element method to the solution of the multichannel Schrödinger equation.

We apply the spectral element method to the determination of scattering and bound states of the multichannel Schrödinger equation. In our approach, the reaction coordinate is discretized on a grid of points whereas the internal coordinates are described by either purely diabatic or locally diabatic (diabatic-by-sector) bases. Bound levels and scattering matrix elements are determined with spectral accuracy using relatively small number of points. The scattering problem is cast as a linear system solved using state-of-the-art sparse matrix non-iterative packages. Boundary conditions can be imposed so as to compute a single column of the matrix solution. A comparison with log-derivative propagators customarily used in molecular physics is performed. The same discretization scheme can also be applied to bound levels that are computed using direct scalable sparse-matrix solvers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app