Add like
Add dislike
Add to saved papers

Retinoic acid ameliorates high-fat diet-induced liver steatosis through sirt1.

In this study, treatment of C57BL/6J (wild type, WT) mice fed a high-fat diet (HFD) with retinoic acid (RA) decreased body weight and subcutaneous and visceral fat content, reversed the apparent hepatosteatosis, and reduced hepatic intracellular triglyceride and serum alanine transaminase (ALT) and aspartate aminotransferase (AST) concentrations. Moreover, RA treatment improved glucose tolerance and insulin sensitivity in WT mice fed a HFD. However, these RA-induced effects in WT mice fed a HFD were alleviated in liver specific Sirtuin 1 (Sirt1) deficient (LKO) mice fed a HFD. Furthermore, RA also could not improve glucose tolerance and insulin sensitivity in LKO mice fed a HFD. The mechanism studies indicated that RA indeed increased the expression of hepatic Sirt1 and superoxide dismutase 2 (Sod2), and inhibited the expression of sterol regulatory element binding protein 1c (Srebp-1c) in WT mice in vivo and in vitro. RA decreased mitochondrial reactive oxygen species (ROS) production in WT primary hepatocytes and increased mitochondrial DNA (mtDNA) copy number in WT mice liver. However, these RA-mediated molecular effects were also abolished in the liver and primary hepatocytes from LKO mice. In summary, RA protected against HFD-induced hepatosteatosis by decreasing Srebp-1c expression and improving antioxidant capacity through a Sirt1-mediated mechanism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app