Add like
Add dislike
Add to saved papers

Nanoscale rheology at solid-complex fluid interfaces.

Scientific Reports 2017 June 31
Here we present an approach to measure dynamic membrane properties of phospholipid membranes close to an interface. As an example we show results of the membrane dynamics of a phospholipid membrane multilayer-stack on a solid substrate (silicon). On this sample we were able to measure local interaction and friction parameters using Grazing Incidence Neutron Spin Echo Spectroscopy (GINSES), where an evanescent neutron wave probes the fluctuations close to a rigid interface. With this method it is possible to access length scales in the nano to micrometer region as well as energies in the μeV range. Using a new neutron resonator structure we achieved the required intensity gain for this experiment. During our investigations we found an excitation mode of the phospholipid membrane that has not been reported previously and only became visible using the new methodology. We speculate that the energy transported by that undulation can also serve to distribute energy over a larger area of the membrane, stabilizing it. This new methodology has the capability to probe the viscoelastic effects of biological membranes, becoming a new tool for tribology on the nanoscale and has allowed the observation of the hitherto invisible property of phospholipid membranes using neutrons.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app