Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

pVHL suppresses Akt/β-catenin-mediated cell proliferation by inhibiting 14-3-3ζ expression.

Biochemical Journal 2017 July 28
The mechanisms controlling degradation of cytosolic β-catenin are important for regulating β-catenin co-transcriptional activity. Loss of von Hippel-Lindau protein (pVHL) has been shown to stabilize β-catenin, increasing β-catenin transactivation and β-catenin-mediated cell proliferation. However, the role of phosphoinositide 3-kinase (PI3K)/Akt in the regulation of β-catenin signaling downstream from pVHL has never been addressed. Here, we report that hyperactivation of PI3K/Akt in cells lacking pVHL contributes to the stabilization and nuclear accumulation of active β-catenin. PI3K/Akt hyperactivation is facilitated by the up-regulation of 14-3-3ζ and the down-regulation of 14-3-3ε, 14-3-3η and 14-3-3θ. Up-regulation of 14-3-3ζ in response to pVHL is important for the recruitment of PI3K to the cell membrane and for stabilization of soluble β-catenin. In contrast, 14-3-3ε and 14-3-3η enhanced PI3K/Akt signaling by inhibiting PI3K and PDK1, respectively. Thus, our results demonstrated that 14-3-3 family members enhance PI3K/Akt/β-catenin signaling in order to increase proliferation. Inhibition of Akt activation and/or 14-3-3 function strongly reduces β-catenin signaling and decreases cell proliferation. Thus, inhibition of Akt and 14-3-3 function efficiently reduces cell proliferation in 786-0 cells characterized by hyperactivation of β-catenin signaling due to pVHL loss.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app